plante moran | Audit. Tax. Consulting. Wealth Management.

Manage risk: data driven decisions for construction

Adapting to a new world

Bob Tinglestad | Principal Construction Technology

I'm one of the firm's construction leaders with an emphasis on improving organizational performance through technology optimization and analytics. My expertise spans business intelligence needs analysis, data integration/management, and BI tool implementations. My passion is helping our clients through the journey of becoming a data-driven organization; enabling them in making confident decisions that solve problems, optimize productivity, seize opportunities, and manage risk.

- Understand how business analytics can improve your organization's decision making.
- Create a plan to update your business's technology and data structures to support more effective decisions around bidding, cash management, labor and project management.

1

Data analytics: Lessons from the pandemic

- 1. The digital transformation is here.
- 2. Data enables better decision-making.
- 3. Data governance is critical.
- 4. Ensure privacy & security.
- 5. Focus presentation on users & action.
- 6. Don't be data historians.
- 7. Have a plan, but be agile.

COVID-19 & construction: Work in progress

How many jobs am I winning? How are decreases in job size and increases in competition impacting our business model?

Everywhere I look, people have different versions of the same data. Which one do I believe? Should we bid on this

> Are supcontractor bids reasonable? What are the true indicators of an accurate bid?

project? How much?

How do we know what we think is happening, is really happening? How trustworthy is past experience?

> Are we tracking PPP spend appropriately?

What are COVID-19 case count trends near our job sites?

I don't want to spend every weekend dumping bid, job cost, and scheduling data into Excel.

There's no consistency to how we measure project managers. 30/60/90% gain/fade would be great!

If that developer doesn't move forward, how can we best keep our skilled laborers?

Will materials be on time? Can we stay on schedule?

Creating a data-driven culture in construction

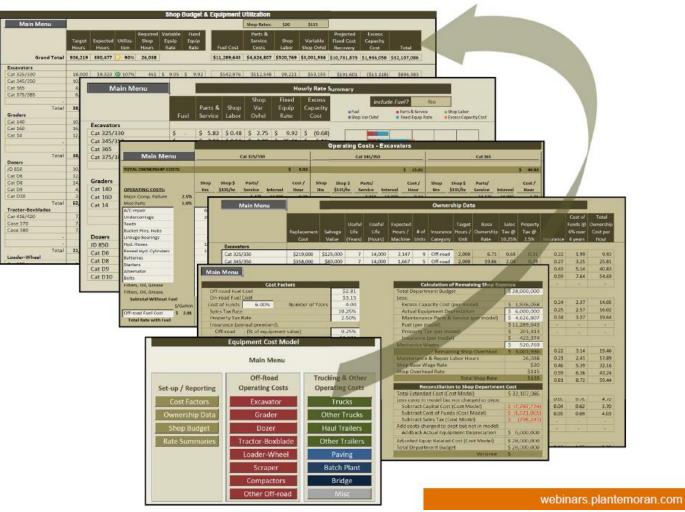
Collaboration, Transparency & Alignment.

A few practical examples to support your visioning...

Example #1: Cash gap

	12/2015	12/2016	12/2017	12/2018	12/2019
AR Days	47.3	44.6	80.2	65.2	55.8
Net Billings in Excess	-2.60	-0.33	-1.90	2.99	-11.60
Inventory Days	40.62	13.90	22.50	20.98	15.60
AP Days	8.63	20.40	5.36	5.80	13.13
Inventory	\$6,195,234	\$6,013,254	\$5,474,580	\$5,620,104	\$5,327,982
Net Billings in Excess	-4.88	-0.39	-2.59	4.80	-9.30
One Day Cost of Sales	\$23,645.36	(\$33,606.73)	\$88,555.66	\$756,321.63	\$5,649.01
One Day of Revenue	\$460,550.30	\$351,216.35	\$267,953.49	\$399,321.64	\$600,453.12
Accounts Payable	\$1,963,245.36	\$6,534,321.65	\$2,064,974.33	\$334,653.64	\$4,832,615.13
Accounts Receivable	\$22,563,984.43	\$16,498,732.13	\$17,654,968.03	\$31,498,657.13	\$8,564,897.31

Example #2: Margin Analysis


			D	etail				
	2017				2018			
Job Name	Contract Value	Estimated Cost	Gross Margin	GM %	Contract Value	Estimated Cost	Gross Margin 🗄	GM %
								6.0%
111 Diego Dr.	45,151,628	44,751,628	400,000	0.9%	46,709,054	48,806,326	-2,097,272	-4.5%
CC River	32,799,138	32,179,256	619,882	1.9%	33,186,530	33,325,356	-138,826	-0.4%
Park Library Parking Lot	237,203	237,203	0	0.0%	0	72,719	-72,719	0.0%
Cotton Wood Visitor Center Roof	143,000	143,000	0	0.0%	161,674	181,999	-20,325	-12.6%
Master Main Lobby	1,178,068	1,139,793	38,275	3.2%	1,173,171	1,184,984	-11,813	-1.0%
TR5 Veranda Reno	262,942	312,942	-50,000	-19.0%	227,256	238,669	-11,414	-5.0%
Succession Art Gallery	504,021	504,021	0	0.0%	532,524	533,622	-1,099	-0.2%
Widedot - Box T*R	1,691	1,495	196	11.6%	0	163	-163	
P90 USCG Carpet Install	2,547	2,316	232	9.1%	1,631	1,763	-132	-8.1%
Widedot - U3, Y65, Duo	4,893	4,355	538	11.0%	4,448	4,467	-20	-0.4%
Widedot Fill Holes	9,200	8,464	736	8.0%	4,980	4,998	-18	-0.4%
Widedot - Flooring	5,300	4,876	424	8.0%	4,941	4,958	-18	-0.4%
Widedot - Flooring part 2	5,300	4,876	424	8.0%	4,972	4,986	-14	-0.3%
Widedot - Basement Blowout	1,100	979	121	11.0%	1,047	1,050	-4	-0.3%
Welton Crop Redesign	1,125	1,077	48	4.3%	0	1	-1	

Example #3: Backlog & scheduling

Labor Ba	acklog						Material	Backlog
Category	As Bid Backlog Days	Backlog Days Used	Days Remaining	Potential Days	Open Days	Choose a Job Number	r	
Traffic Control	1643	661	982	1700	57	(All)		
Grading	613	673	-60	750		Estimator Name		
Mill Cleanup	1000	995	5	1500	500	(All)		
Conditioning	105	100	5	110		Project Manager Nan	1e	
Paving	889	449	440	900	11	(All)		
Job Number	Job Description	Estimate Number		Project Manager	Category	As Bid Backlog Days	Backlog Days Used	Days Remaining
316-56984	Bryant St	13654987		Shaun Hanson	Conditioning	22	15	6.6
	'				Paving	94	83	10.6
					Grading	198	180	18
135-4465	16th Street Mall	13224976	Jack Johnson	Shaun Hanson	Conditioning	17	5	11.8
					Paving	73	43	29.8
					Grading	154	99	55

Example #4: Equipment Cost Modeling

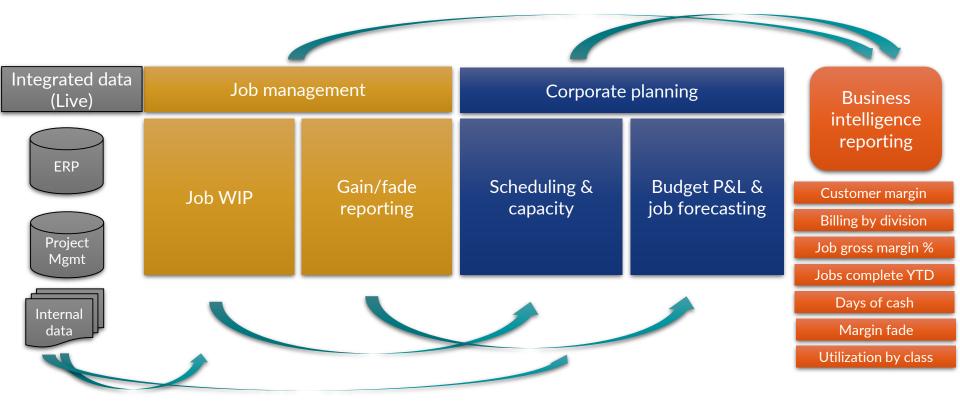
EQUIPMENT COST MODEL EXAMPLE



Construction performance management

Scenario / What-if modeling

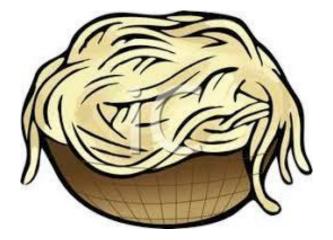
- Cash flow
- Headcount Planning / PPP
- CAPEX Planning
- OPEX Budgeting
- Compare to industry benchmarks
- Planning and forecasting driven by leading indicators



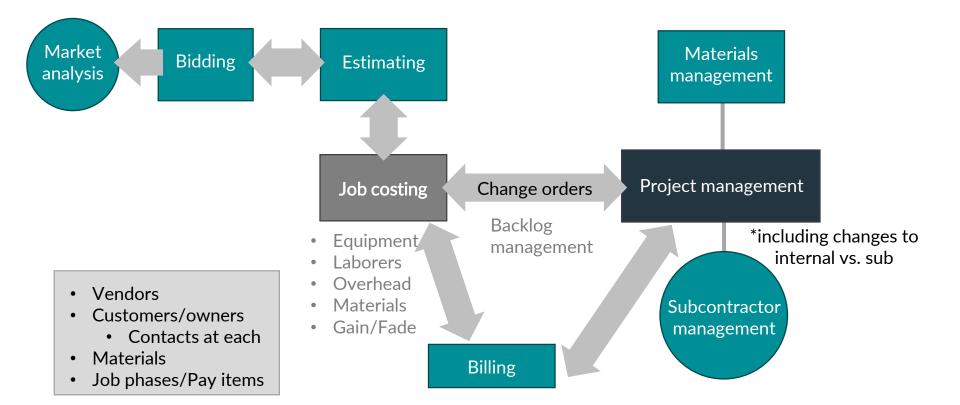
"In preparing for battle, I have always found that plans are useless, but planning is indispensable."

-General Dwight D. Eisenhower

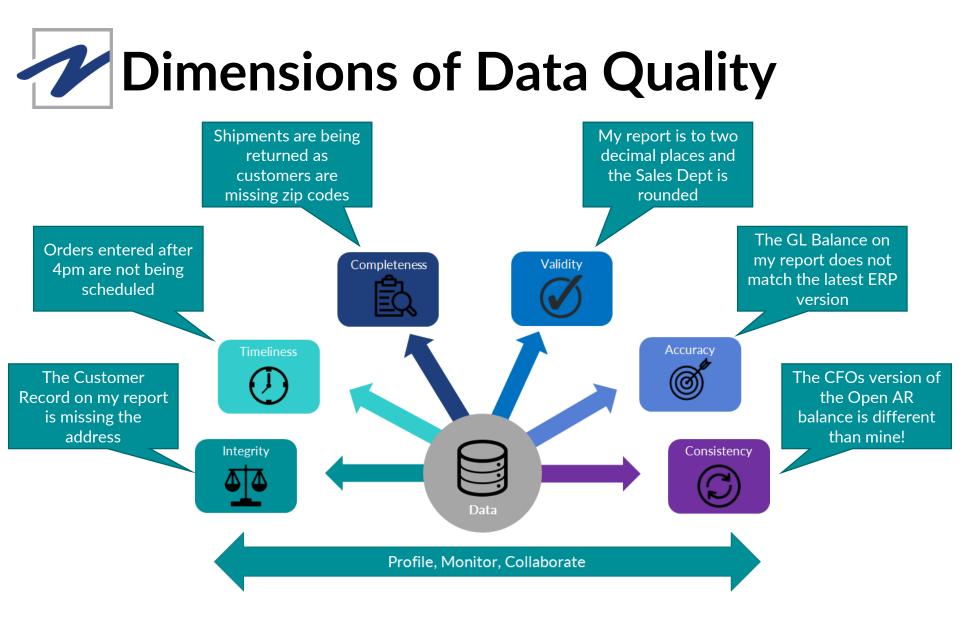
- Understand how business analytics can improve your organization's decision making.
- Create a plan to update your business's technology and data structures to support more effective decisions around bidding, cash management, labor and project management.

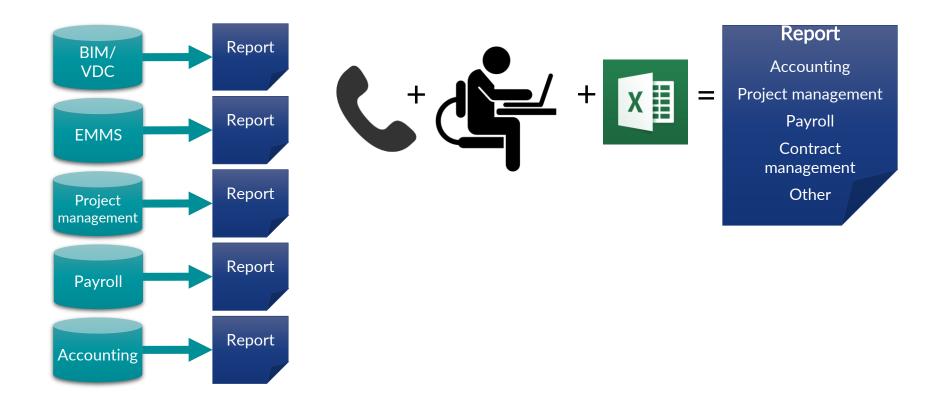

Construction industry data challenges

- Multiple data systems
- Redundant, manual and paperbased reporting
- Lack of single source of truth for data
- Unclear responsibilities for and ownership of data
- Data & analytics skill & communication gaps


Applications for construction

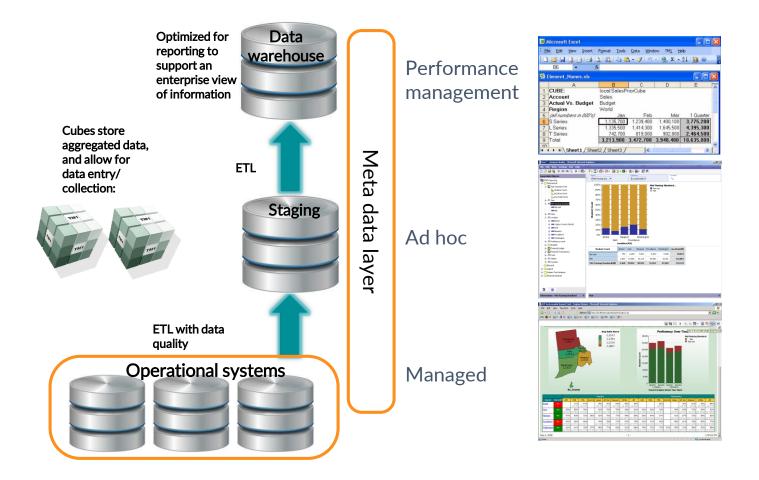
- Primary systems
 - Estimating & bidding
 - Accounting systems
 - Project management systems
 - Project scheduling
 - Fleet management


- Additional systems
 - Invitation to bid
 - Contact management/CRM
 - Prequalification
 - Telematics
 - Safety/EHS
 - Human Resources
 - Payroll
 - Plant ticketing
 - Etc.



The real-world problem of data issues

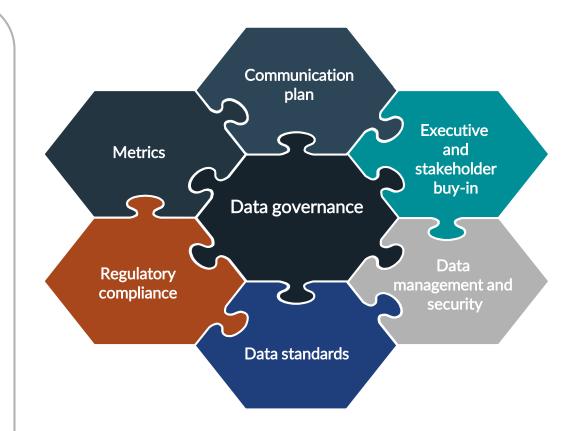
Customer name	Number of orders	Total paid		Customer name	Number of orders	Total paid
Chris Froome	11	11,000		Bradley Wiggins	20	20,000
Mark Cavendish	7	7,000		Mark Cavendish	13	13,000
Bradley M	6	6,000	, i i i i i i i i i i i i i i i i i i i	Chris Froome	11	11,000
Wiggins				Tyler Hamilton	6	6,000
M.S. Cavendish	6	6,000				
Bradley Marc	5	5,000				
Wiggins						
BM Wiggins	4	4,000				
Taylor Hamilton	3	3,000				
Tyler Hamilton	2	2,000				
Brad Wiggins	2	2,000			All and the second second	
Bradley Wiggins	2	2,000				
Tylor Hamilton	1	1,000	Statement and a			B
B.M. Wiggins	1	1,000	State of the second	States of the second of	and the state of the	Column Street of Street


1

<u>After</u> business analytics solution is implemented

Reference business analytics architecture

Analytics stages of maturity


Level 1 Opportunistic	Level 2 Siloed	Level 3 Enterprise	Level 4 Predictive	Level 5 Prescriptive			
		What Happened?	?				
 Data is compiled at an individual level No consistency No governance 	 Data is compiled at a department level Data sharing is limited 	 Data combined and standardized across the enterprise Data governance becomes important Insight gained across data domains Data supports decision making 	Why did it Happen When Wil	? I it Happen?			
	 Each department has its own interpretation 		 Data driven analytics Proactive decision making 	How do we Make it Happen? • Data drives policy			
Hindsight Insight Foresight							

The jigsaw of data governance

Best practice components are variable for each organization; some translate into higher success rates than others.

Start with a manageable set of data. Look at the size of the organization, the number of data sets to be governed, and required data security compliance

Establish which best practices will generate the highest results for your organization's data governance initiative and implement them first.

Analytics program methodology

Set project goals, prioritize business needs and plan phases

Determine requirements, KPIs and data definitions to satisfy needs

Architect the data solution

Build Source to Target mappings and transformations

Build BI metadata model, reports and visualizations

Data Governance

plante moran | Audit. Ta

<u> Data Quality</u>

Solve a business need Understandability Performance Accuracy Executive sponsorship

Q&A

Business Analytics for Data Driven Decisions (CFMA)

Supercharge your industry peer group to drive innovation

Growing into business analytics

How construction companies can use business analytics to boost margins

Case study: Large construction company upgrades critical ERP software